Search results for "Complex Singularitie"
showing 10 items of 12 documents
Unsteady Separation and Navier-Stokes Solutions at High Reynolds Numbers
2010
We compute the numerical solutions for Navier-Stokes and Prandtl’s equations in the case of a uniform bidimensional flow past an impulsively started disk. The numerical approx- imation is based on a spectral methods imple- mented in a Grid environment. We investigate the relationship between the phenomena of unsteady separation of the flow and the exponential decay of the Fourier spectrum of the solutions. We show that Prandtl’s solution develops a separation singularity in a finite time. Navier-Stokes solutions are computed over a range of Reynolds numbers from 3000 to 50000. We show that the appearance of large gradients of the pressure in the stream- wise direction, reveals that the visc…
Well-posedness and singularity formation for the Camassa-Holm equation
2006
We prove the well-posedness of Camassa--Holm equation in analytic function spaces both locally and globally in time, and we investigate numerically the phenomenon of singularity formation for particular initial data.
Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array
2014
In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different $Re$ numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous int…
Singularity formation for Prandtl’s equations
2009
Abstract We consider Prandtl’s equations for an impulsively started disk and follow the process of the formation of the singularity in the complex plane using the singularity tracking method. We classify Van Dommelen and Shen’s singularity as a cubic root singularity. We introduce a class of initial data, uniformly bounded in H 1 , which have a dipole singularity in the complex plane. These data lead to a solution blow-up whose time can be made arbitrarily short within the class. This is numerical evidence of the ill-posedness of the Prandtl equations in H 1 . The presence of a small viscosity in the streamwise direction changes the behavior of the singularities. They stabilize at a distanc…
Complex singularities in KdV solutions
2016
In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.
Singularity tracking for Camassa-Holm and Prandtl's equations
2006
In this paper we consider the phenomenon of singularity formation for the Camassa-Holm equation and for Prandtl's equations. We solve these equations using spectral methods. Then we track the singularity in the complex plane estimating the rate of decay of the Fourier spectrum. This method allows us to follow the process of the singularity formation as the singularity approaches the real axis.
A note on the analytic solutions of the Camassa-Holm equation
2005
Abstract In this Note we are concerned with the well-posedness of the Camassa–Holm equation in analytic function spaces. Using the Abstract Cauchy–Kowalewski Theorem we prove that the Camassa–Holm equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic, belongs to H s ( R ) with s > 3 / 2 , ‖ u 0 ‖ L 1 ∞ and u 0 − u 0 x x does not change sign, we prove that the solution stays analytic globally in time. To cite this article: M.C. Lombardo et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).
Analytic solutions and Singularity formation for the Peakon b--Family equations
2012
This paper deals with the well-posedness of the b-family equation in analytic function spaces. Using the Abstract Cauchy-Kowalewski theorem we prove that the b-family equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic and it belongs to H s with s>3/2, and the momentum density u 0-u 0, xx does not change sign, we prove that the solution stays analytic globally in time, for b≥1. Using pseudospectral numerical methods, we study, also, the singularity formation for the b-family equations with the singularity tracking method. This method allows us to follow the process of the singularity formation in the complex plane as the singularity a…
Regularized Euler-alpha motion of an infinite array of vortex sheets
2016
We consider the Euler- $$\alpha $$ regularization of the Birkhoff–Rott equation and compare its solutions with the dynamics of the non regularized vortex-sheet. For a flow induced by an infinite array of planar vortex-sheets we analyze the complex singularities of the solutions.Through the singularity tracking method we show that the regularized solution has several complex singularities that approach the real axis. We relate their presence to the formation of two high-curvature points in the vortex sheet during the roll-up phenomenon.
Singularity formation and separation phenomena in boundary layer theory
2009
In this paper we review some results concerning the behaviour of the incompressible Navier–Stokes solutions in the zero viscosity limit. Most of the emphasis is put on the phenomena occurring in the boundary layer created when the no-slip condition is imposed. Numerical simulations are used to explore the limits of the theory. We also consider the case of 2D vortex layers, i.e. flows with internal layers in the form of a rapid variation, across a curve, of the tangential velocity.